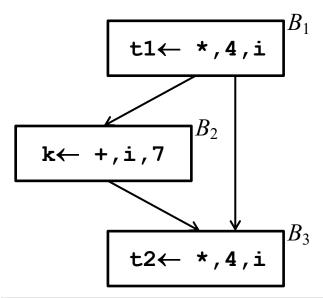
3. Анализ потока данных

3.1.1 Определение

- \Diamond Выражение e $\partial o c m y n h o$ в точке p, если e вычисляется на любом пути от Entry до p причем переменные, входящие в состав e не переопределяются между последним таким вычислением и точкой p.
- \Diamond Пример. Пусть точка p вход в блок B_3 .

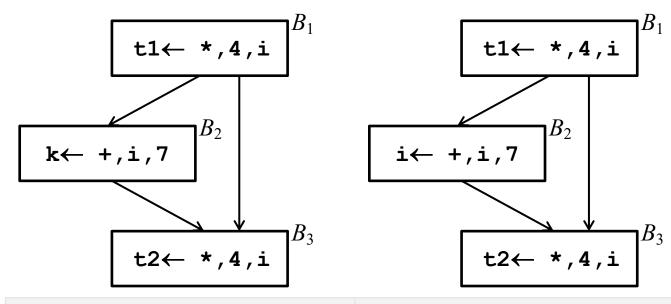


На рисунке присваивание μe убивает выражение *,4,i. Поэтому $t2 \leftarrow *,4,i$ можно заменить на $t2 \leftarrow t1$

3.1.1 Определение

 \Diamond Выражение e $\partial o c m y n h o$ в точке p, если e вычисляется на любом пути от Entry до p причем переменные, входящие в состав e не переопределяются между последним таким вычислением и точкой p.

 \Diamond Пример. Пусть точка p – вход в блок B_3 .



На рисунке присваивание μe убивает выражение *, 4, i. Поэтому $t2\leftarrow$ *, 4, i можно заменить на $t2\leftarrow$ t1

Присваивание *убивает* выражение * , **4** , **i**. Замена **t2**← * , **4** , **i** на **t2**← **t1** будет некорректной.

3.1.1 Определение

Выражение e доступно в точке p, если e вычисляется на любом пути от Entry до p причем переменные, входящие в состав e не переопределяются между последним таким вычислением и точкой p.

 \Diamond Пример. Пусть точка p — вход в блок B_3 . $t1\leftarrow \star, 4$, i $t2\leftarrow \star, 4$,

Присваивание *не убивает* выражение ***** , **4** , **i**. Замена **t2**←***** , **4** , **i** на **t2**←**t1** корректна.

Присваивание *убивает* выражение ***** , **4** , **i**. Замена **t2**← ***** , **4** , **i** на **t2**← **t1** некорректна.

Перевычисление в B_2 выражения *, 4, і обеспечивает корректность замены $t2\leftarrow$ *, 4, і на $t2\leftarrow$ t1

3.1.1 Определение

- \Diamond Для каждого базового блока B определим
 - \diamond множество e_kill_B выражений, убиваемых в блоке B (пример присваивание $\mathbf{i} \leftarrow +, \mathbf{i}, \mathbf{7}$ в блоке B_2 убиваем выражение $\mathbf{*}, \mathbf{4}, \mathbf{i}$)
 - \Diamond множество e_gen_B выражений, $nopo \Rightarrow c \partial aem bix$ в блоке B (пример присваивание $\mathbf{t1} \leftarrow \mathbf{*}, \mathbf{4}, \mathbf{i}$ в блоке B_2 $nopo \Rightarrow c \partial aem$ выражение $\mathbf{*}, \mathbf{4}, \mathbf{i}$).

3.1.2 Уравнения потока данных

- Для того, чтобы найти доступные выражения, можно использовать метод, напоминающий метод вычисления достигающих определений.
 - \diamond U множество всех выражений программы.
 - \diamond In[B] множество выражений из U, доступных на входе в B,
 - Траничное условие:

$$In[Entry] = \emptyset$$

Система уравнений:

$$Out[B] = e _gen_B \cup (In[B] - e _kill_B)$$

$$In[B] = \bigcap_{P \in Pred(B)} Out[P]$$

$$In[B_i] = \bigcap_{P \in Pred(B_i)} (e _gen_P \cup (In[P] - e _kill_P))$$

3.1.3 Итеративный алгоритм вычисления доступных выражений

 $oldsymbol{\diamondsuit}$ **Вход**: граф потока, в котором для каждого блока B вычислены множества e gen_B и e $kill_B$

 $\$ **Выход**: множества выражений, доступных на входе (In[B]) каждого базового блока B графа потока.

♦ Метод: выполнить следующую программу

$$In[Entry] = \emptyset;$$

for (каждый базовый блок B, отличный от Entry) In[B] = U;

while (внесены изменения в Out) {

for (каждый базовый блок B, отличный от Entry) {

$$In[B] = \bigcap_{P \in Pred(B)} (e_gen_B \cup (In[P] - e_kill_B))$$

3.1.3 Итеративный алгоритм вычисления доступных выражений

```
Метод: выполнить следующую программу
  In[Entry] = \emptyset;
 WorkList = \emptyset;
  for (каждый базовый блок В, отличный от Entry) {
  поместить В в WorkList;
  In[B] = U; /* Каждому In[B] присваивается значение
                его нулевой итерации */
  };
               /* основной цикл*/
 do {
    Выбрать из очереди WorkList очередной блок В
    Вычислить InNew[B], используя уравнение
    InNew[B] = \bigcap (e \ gen_B \cup (In[B] - e \ kill_B))
                P \in Pred(B)
     if (InNew[B] \neq In[B]) {
       In[B] = InNew[B];
       Поместить потомков В в конец очереди WorkList
  } while |WorkList|>0;
```

3.2.1 Анализ потока данных

О При анализе потока данных рассматриваются множества переменных для описания состояния и такие операции как объединение (∪) и пересечение (∩) множеств.

3.2.1 Анализ потока данных

- О При анализе потока данных рассматриваются множества переменных для описания состояния и такие операции как объединение (∪) и пересечение (∩) множеств.
- ♦ Свойства операций ∪ и ∩:

$$A \cup A = A$$
 $A \cap B = B \cap A$ $A \cap B = B \cap A$ $A \cap B = A \cap B$ $A \cap B = A \cap B$ $A \cap B = A$ $A \cap B = A \cap B$ $A \cap B = A$ $A \cap B =$

3.2.1 Анализ потока данных

- О При анализе потока данных рассматриваются множества переменных для описания состояния и такие операции как объединение (∪) и пересечение (∩) множеств.
- ♦ Свойства операций ∪ и ∩:

$$A \cup A = A$$
 $A \cap A = A$ $A \cap B = B \cap A$ $A \cap B = B \cap A$ $A \cap B = B \cap A$ $A \cap B = A$ $A \cap$

- \diamond Если множество U содержит все элементы, то любое множество $A\subseteq U$ и $A\cup U=U\cup A=U$
- \Diamond Для пересечения (\cap) роль U играет \varnothing : любое множество $A\supseteq\varnothing$ и $A\cap\varnothing=\varnothing\cap A=\varnothing$

порядка, связанное с

операцией

3.2.2 Определение полурешетки

- Полурешетка это абстрактная алгебраическая структура, над элементами которой определена абстрактная операция ∧ (мы будем называть ее «сбор»), обладающая свойствами операций ∪ и ∩.
- Определение. Полурешетка представляет собой множество L, на котором определена бинарная операция «cбop» \land , такая, что для всех x, y и $z \in L$:

$$x \wedge x = x$$
 (идемпотентность)
 $x \wedge y = y \wedge x$ (коммутативность)
 $x \wedge (y \wedge z) = (x \wedge y) \wedge z$ (ассоциативность)

12

Полурешетка имеет верхний элемент (или верх) $\top \in L$ такой, что для всех $x \in L$ выполняется $\top \wedge x = x$

Полурешетка может иметь (но необязательно) *нижний элемент* (или μu 3) $\bot \in L$: $\forall x \in L \ \bot \land x = \bot$

3.2.3 Полурешеточное отношение частичного порядка ≤

 \Diamond Для всех пар $x, y \in L$ определим отношение \leq : $x \leq y$ тогда и только тогда, когда $x \wedge y = x$

$$x \cap y = x \implies x \subseteq y$$

 $x \cup y = x \implies y \subseteq x$

Т.е. отношение ≤ имеет противоположный смысл для ∩ и ∪, являясь обобщением ⊆ или ⊇ для данной задачи анализа потока данных.

3.2.3 Полурешеточное отношение частичного порядка ≤

- \Diamond Для всех пар $x, y \in L$ определим отношение \leq : $x \leq y$ тогда и только тогда, когда $x \wedge y = x$
- ◊ Отношение ≤ является отношением частичного порядка.
 - (1) $Peфлексивность \leq$ следует из идемпотентности \wedge : $x \leq x \iff x \wedge x = x$
 - (2) $Aнтисимметричность \le$ следует из коммутативности \land : пусть $x \le y$ и $y \le x$; тогда по определению операции \le : $x = x \land y = y \land x = y$
 - (3) $\mathit{Транзитивность} \leq \mathsf{следует}$ из ассоциативности \wedge : пусть $x \leq y$ и $y \leq z$; тогда по определению $\leq x \wedge y = x$ и $y \wedge z = y$; $(x \wedge z) = ((x \wedge y) \wedge z) = (x \wedge (y \wedge z)) = (x \wedge y) = x$, $(x \wedge z) = x \Leftrightarrow x \leq z$.

3.2.4 Наибольшая нижняя граница

- Определение. Пусть $\langle L, \leq \rangle$ частично упорядоченное множество (в частности, полурешетка). Hauбольшей ниженей границей inf (x, y) элементов x и $y \in L$ называется элемент $g \in L$, такой, что $g \leq x$; $g \leq y$; и если $z \in L$, такой, что $z \leq x$ и $z \leq y$, то $z \leq g$.
- \Diamond Утверждение. Если x и $y \in L$, где $\langle L, \wedge \rangle$ полурешетка, то $inf(x, y) = x \wedge y$.

Доказательство. Пусть $g = x \wedge y$. Тогда

$$g \wedge x = ((x \wedge y) \wedge x) = (x \wedge (y \wedge x)) = (x \wedge (x \wedge y)) =$$

= $((x \wedge x) \wedge y) = (x \wedge y) = g$, откуда следует $g \leq x$.

Точно таким же образом доказывается, что $g \le y$.

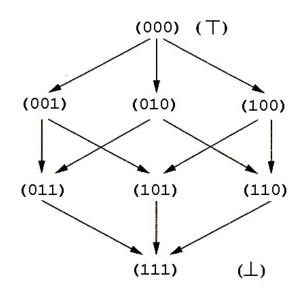
Пусть $z \in L$, $z \le x$ и $z \le y$. Докажем, что $z \le g$. Имеем:

$$(z \land g) = (z \land (x \land y)) = ((z \land x) \land y); z \le x \Rightarrow (z \land x) = z$$

\Rightarrow (z \land g) = (z \land y) = z. \Rightarrow (z \land g) = z \Rightarrow z \leq g.

3.2.5. Диаграммы полурешеток

- \Diamond Диаграмма полурешетки $\langle L, \wedge \rangle$ представляет собой граф, узлами которого являются элементы L, а ребра направлены от x к y, если $y \leq x$.
- \Diamond Пример. На рисунке диаграмма полурешетки $\langle U, \cup \rangle, |U| = 8$: элемент множества U представляется битовым 3-вектором.



(по определению ≤ :

$$x \le y \le x \land y = x$$

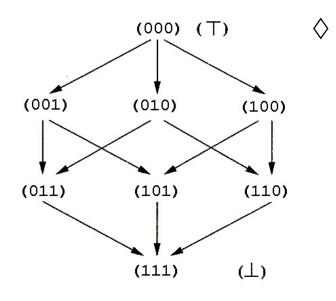
В частности, если сбор – это объединение:

$$x \cup y = x \Rightarrow x \supseteq y$$

т. е. дуги направлены от *большего* к *меньшему* в смысле *«полурешеточного»* отношения, а в «обычном» смысле получается наоборот (но так будет только для \cup).

3.2.5. Диаграммы полурешеток

- \Diamond Диаграмма полурешетки $\langle L, \wedge \rangle$ представляет собой граф, узлами которого являются элементы L, а ребра направлены от x к y, если $y \leq x$.
- \Diamond Пример. На рисунке диаграмма полурешетки $\langle U, \cup \rangle, |U| = 8$: элемент множества U представляется битовым 3-вектором.

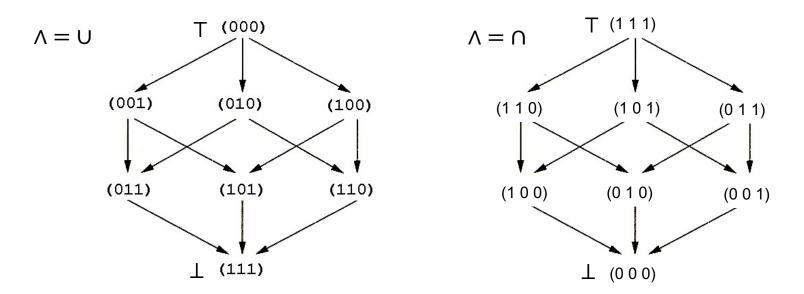


Замечание. Определение элемента \bot внизу диаграммы: для любого $x \in L$: $\bot \land x = \bot$ Этот элемент называется «низом», так как по определению отношения \le для любого $x \in L$ $\bot \le x$. Полурешетка с операцией \land не обязательно содержит \bot .

3.2.5.1. Примеры полурешеток

- ◊ Достигающие определения и живые переменные:
 - $\Lambda = \cup (cfop ofbeduhehue), \bot = (111), T = (000)$
- ◊ Доступные выражения:

$$\Lambda = \cap (\text{сбор} - \text{пересечение}), \bot = (000), \top = (111)$$



3.2.6 Наименьшая верхняя граница

- \Diamond В частично упорядоченном множестве $\langle L, \leq \rangle$ можно по аналогии с inf(x,y) определить наименьшую верхнюю границу sup(x,y) как такой $b\in L$, что $x\leq b,\,y\leq b$, и если для $z\in L$ $x\leq z$ и $y\leq z$, то $b\leq z$.
 - \Diamond В полурешетке $\langle L, \wedge \rangle \inf(x, y)$ существует для любой пары элементов x и $y \in L$, а $\sup(x, y)$ нет.
 - $\$ В частично упорядоченном множестве $\langle L, \leq \rangle$, в котором для любых x и $y \in L$ существует $sup\ (x,\ y)$, можно определить бинарную операцию \lor (объединение) $x \lor y = sup\ (x,\ y)$.
 - Множество, в котором определены обе операции –
 ∧ (сбор) и ∨ (объединение), называется решеткой.

3.3.1 Определение

 \Diamond Определение. Cmpyкmypoй nomoka dahhыx называется четверка $\langle D, F, L, \wedge \rangle$,

где

- \Diamond D направление анализа (Forward или Backward),
- \diamond F семейство передаточных функций,
- $\diamond L$ поток данных (множество элементов полурешетки),
- ♦ ∧ реализация операции сбора.

♦ Примеры.

1 Структура потока данных для анализа **достигающих определений**: $\langle Forward, GK, Def, \cup \rangle$, где GK—семейство передаточных функций вида gen-kill, Def— множество определений переменных.

3.3.1 Определение

- ♦ Примеры.
 - 2 Структура потока данных для анализа живых переменных:

$$\langle Backward, \mathcal{LV}, Var, \cup \rangle$$
,

где \mathcal{LV} -семейство передаточных функций вида,

$$f(x) = use \cup (x - def)$$

Def – множество определений переменных.

3 Структура потока данных для анализа доступных выражений:

$$\langle Forward, AE, Expr, \cap \rangle$$
,

где \mathcal{AE} – семейство передаточных функций вида

$$f(x) = e_gen \cup (x - e_kill),$$

Expr – множество выражений программы.

3.3.2 Замкнутость

- \Diamond Определение. Семейство передаточных функций F называется 3amkhymbm, если:
 - \Diamond F содержит тождественную функцию $I: \forall x \in L: I(x) = x$.
 - \Leftrightarrow F замкнуто относительно композиции: $\forall f, g \in F \Rightarrow h(x) = g(f(x)) \in F$.

 \Diamond Утверждение 1. Семейство передаточных функций F, используемое при анализе достигающих определений (передаточные функции вида gen-kill), является замкнутым.

3.3.2 Замкнутость

- \Diamond Утверждение 1. Семейство передаточных функций F, используемое при анализе достигающих определений (передаточные функции вида gen-kill), является замкнутым.
 - 1) Замкнутость относительно композиции уже установлена.
 - 2) Тождественная функция I(x) = x является функцией вида gen-kill с $gen = kill = \emptyset$.

3.3.2 Замкнутость

- \Diamond Утверждение 1. Семейство передаточных функций F, используемое при анализе достигающих определений (передаточные функции вида gen-kill), является замкнутым.
 - 1) Замкнутость относительно композиции уже установлена.
 - 2) Тождественная функция I(x) = x является функцией вида gen-kill с $gen = kill = \emptyset$.
- ♦ Утверждение 2. Семейство передаточных функций, используемое при анализе живых переменных является замкнутым.
- ♦ Утверждение 3. Семейство передаточных функций, используемое при анализе доступных выражений является замкнутым.

3.3.3 Монотонные структуры

- \Diamond Определение 1. Структура потока данных $\langle D, F, L, \wedge \rangle$ называется монотонной, если $\forall x, y \in L, \forall f \in F (x \le y) \Rightarrow f(x) \le f(y)$.
- \Diamond Определение 2. Структура потока данных $\langle D, F, L, \wedge \rangle$ называется монотонной, если $\forall x, y \in L, \forall f \in F \ f(x \wedge y) \leq f(x) \wedge f(y)$.

3.3.3 Монотонные структуры

- \Diamond Определение 1. Структура потока данных $\langle D, F, L, \wedge \rangle$ называется монотонной, если $\forall x, y \in L, \forall f \in F \ (x \le y) \Rightarrow f(x) \le f(y)$.
- \Diamond Определение 2. Структура потока данных $\langle D, F, L, \wedge \rangle$ называется монотонной, если $\forall x, y \in L, \forall f \in F \ f(x \wedge y) \leq f(x) \wedge f(y)$.
- ♦ Утверждение. Определения 3.3.3.1 и 3.3.3.2 эквивалентны.

3.3.3 Монотонные структуры

- \Diamond Определение 1. Структура потока данных $\langle D, F, L, \wedge \rangle$ называется монотонной, если $\forall x, y \in L, \forall f \in F \ x \leq y \Rightarrow f(x) \leq f(y)$.
- \Diamond Определение 2. Структура потока данных $\langle D, F, L, \wedge \rangle$ называется монотонной, если $\forall x, y \in L, \forall f \in F \ f(x \wedge y) \leq f(x) \wedge f(y)$.
- ♦ Утверждение. Определения 3.2.3.1 и 3.2.3.2 эквивалентны.
 - ♦ Из определения 1 следует определение 2:

$$x \wedge y = inf(x, y) \Rightarrow x \wedge y \le x \text{ if } x \wedge y \le y \Rightarrow (1) \Rightarrow$$

$$f(x \wedge y) \le f(x) \text{ if } f(x \wedge y) \le f(y) \Rightarrow$$

$$f(x \wedge y) = inf(f(x), f(y)) = f(x) \wedge f(y)$$

Из определения 2 следует определение 1:

$$x \le y \Rightarrow x \land y = x \Rightarrow_{(O\Pi p2)} f(x) \le f(x) \land f(y),$$

 $f(x) \land f(y) = inf(f(x), f(y)) \le f(y); \Rightarrow f(x) \le f(y)$

3.3.4 Дистрибутивные структуры

 \Diamond Определение. Структура потока данных $\langle D, F, L, \wedge \rangle$ называется $\partial ucmpu \delta ymu$ вной, если

$$\forall x, y \in L, \ \forall f \in F: \ f(x \land y) = f(x) \land f(y).$$

3.3.4 Дистрибутивные структуры

- \Diamond Определение. Структура потока данных $\langle D, F, L, \wedge \rangle$ называется $\partial u cmpu \delta y mu в ho й,$ если $\forall x, y \in L, \ \forall f \in F : \ f(x \wedge y) = f(x) \wedge f(y).$
- \Diamond Утверждение. Если структура потока данных $\langle D, F, L, \wedge \rangle$ дистрибутивна, то она монотонна.

$$a = b \Rightarrow_{u \ni e \land m nome + m + o c m b} a \land b = a \Rightarrow a \leq b$$

 $f(x \land y) = f(x) \land f(y) \Rightarrow f(x \land y) \leq f(x) \land f(y)$

◊ Обратное утверждение неверно.

В качестве доказательства можно привести пример монотонной структуры потока данных, которая не дистрибутивна.

3.3.5. Дистрибутивность структуры достигающих определений

- \Diamond Утверждение. Структура достигающих определений $RD = \langle Forward, Gen\text{-}kill, \emptyset, \cup \rangle$ дистрибутивна
- \Diamond $y,z \in RD, f(x) = G \cup (x-K) \in Gen\text{-}kill.$ Докажем, что $G \cup ((y \cup z) K) = (G \cup (y-K)) \cup (G \cup (z-K))$
 - (1) $y, z \in G$: равенство выполняется, так как G входит и в левую, и в правую его части.
 - (2) $y, z \notin G$: G можно исключить из равенства: $(y \cup z) K = (y K) \cup (z K)$

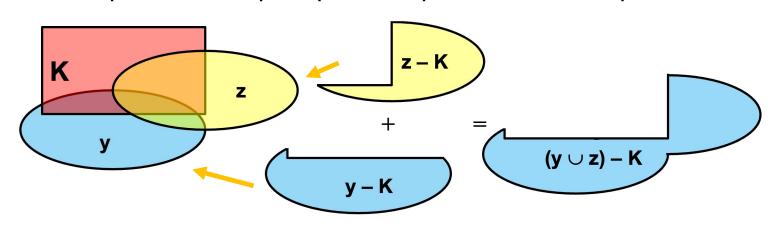
Это равенство проверяется при помощи диаграмм Венна.

3.3.5. Дистрибутивность структуры достигающих определений

- \Diamond **Утверждение.** Структура достигающих определений $RD = \langle Forward, Gen\text{-}kill, \emptyset, \cup \rangle$ дистрибутивна
- \Diamond $y, z \in RD, f(x) = G \cup (x K) \in Gen\text{-}kill.$ Докажем, что $G \cup ((y \cup z) K) = (G \cup (y K)) \cup (G \cup (z K))$
 - (2) y, z ∉ G: G можно исключить из равенства:

$$(y \cup z) - K = (y - K) \cup (z - K)$$

Это равенство проверяется при помощи диаграмм Венна.



3.3.6. Дистрибутивность структур живых переменных и доступных выражений

- \Diamond Следствие 1. Структура живых переменных $LV = \langle Backward, Def$ -изе, $\emptyset, \cup \rangle$ дистрибутивна
- $\Diamond f(x) \in Def$ -use алгебраически подобна функции класса Gen-kill.
- \Diamond Следствие 2. Структура доступных выражений $AE = \langle Forward, \ Gen\text{-}kill, \ U, \ \cap \rangle$ дистрибутивна

3.4 Обобщенный итеративный алгоритм

3.4.1 Описание алгоритма

- ♦ Алгоритм. Итеративное решение задачи анализа потока данных
 - lacktriangle **Вход**: граф потока управления, структура потока данных $\langle D, F, L, \wedge
 angle$, передаточная функция $f_B \in F$
 - константа из $l \in L$ для граничного условия
 - \Diamond **Выход**: значения из L для In[B] и Out[B] для каждого блока B в графе потока.
 - **Метод**: если D = Forward выполнить программу (3.4.2); если D = Backward выполнить программу (3.4.3).

3.4 Обобщенный итеративный алгоритм

3.4.2 Решение задачи потока данных (D = Forward)

```
Out[Entry] = l;
for (each B \neq Entry) Out[B] = T;
while (внесены изменения в Out)
   for (each B \neq Entry) {
      In[B] = \bigwedge_{P \in Pred(B)} Out[P]
      Out[B] = f_B(In[B])
```

3.4 Обобщенный итеративный алгоритм

3.4.3 Решение задачи потока данных (D = Backward)

```
In[Exit] = l;
for (each B \neq Exit) In[B] = T;
while (внесены изменения в In)
   for (each B \neq Exit) {
       Out[B] = \bigwedge_{S \in Succ(B)} In[S]
       In[B] = f_{B}(Out[B])
```

3.5 Свойства итеративного алгоритма 3.5.1 Сходимость к решению

 Утверждение. Если обобщенный итеративный алгоритм сходится, то получающийся результат является решением уравнений потоков данных.

$$\Diamond$$
 $D = Forward$:

Если после очередной итерации цикла **while** хотя бы для одного B уравнение $Out[B] = f_B(In[B])$ не удовлетворяется, то для этого B

$$OutNew[B] \neq Out[B]$$
.

Следовательно, в множество Out[B] будет внесено изменение и change не позволит выйти из цикла.

3.5 Свойства итеративного алгоритма 3.5.1 Сходимость к решению

Утверждение. Если обобщенный итеративный алгоритм сходится, то получающийся результат является решением уравнений потоков данных.

D = Backward:
 Аналогичные рассуждения, только вместо множества Out[B] рассматривается множество In[B].

3.5.2 Максимальная фиксированная точка

Определение. Максимальная фиксированная точка системы уравнений

$$In[B] = \bigwedge_{P \in Pred(B)} Out[P]$$
$$Out[B] = f_B(In[B])$$

представляет собой решение $\{In[B_i]^{max},\,Out[B_i]^{max}\}$ этой системы, обладающее тем свойством, что для любого другого решения $\{In[B_i],\,Out[B_i]\}$ выполняются условия

$$In [B_i] \leq In[B_i]^{max}$$
 u $Out[B_i] \leq Out[B_i]^{max}$

где \leq – полурешеточное отношение частичного порядка.

3.5.3 Монотонность итераций

- \Diamond Утверждение 1. Пусть $In[B]^i$ и $Out[B]^i$ значения In[B] и Out[B] после i-ой итерации. Если структура потока данных монотонна, то $In[B]^{i+1} \leq In[B]^i$ и $Out[B]^{i+1} \leq Out[B]^i$
 - \diamond Индукция по i.

3.5.3 Монотонность итераций

- \Diamond Утверждение 1. Пусть $In[B]^i$ и $Out[B]^i$ значения In[B] и Out[B] после i-ой итерации. Если структура потока данных монотонна, то $In[B]^{i+1} \leq In[B]^i$ и $Out[B]^{i+1} \leq Out[B]^i$
 - \diamond Индукция по i.
 - Основание:

$$In[B]^l \leq In[B]^0$$
 и $Out[B]^l \leq Out[B]^0,$ так как $orall B \neq Entry$: $In[B]^0 = \mathsf{T}$ и $Out[B]^0 = \mathsf{T}.$

3.5.3 Монотонность итераций

- \Diamond Утверждение 1. Пусть $In[B]^i$ и $Out[B]^i$ значения In[B] и Out[B] после i-ой итерации. Если структура потока данных монотонна, то $In[B]^{i+1} \leq In[B]^i$ и $Out[B]^{i+1} \leq Out[B]^i$
 - \diamond Индукция по i.
 - ullet **Шаг**: Пусть $In[B]^k \leq In[B]^{k-1}$ и $Out[B]^k \leq Out[B]^{k-1}$

3.5 Свойства итеративного алгоритма 3.5.3 Монотонность итераций

- \Diamond Утверждение 1. Пусть $In[B]^i$ и $Out[B]^i$ значения In[B] и Out[B] после i-ой итерации. Если структура потока данных монотонна, то $In[B]^{i+1} \leq In[B]^i$ и $Out[B]^{i+1} \leq Out[B]^i$
 - \diamond Индукция по i.
 - lack **Шаг**: Пусть $In[B]^k \leq In[B]^{k-1}$ и $Out[B]^k \leq Out[B]^{k-1}$ $In[B]^{k+1} = igwedge_{P \in Pred(B)} Out[P]^k \leq igwedge_{P \in Pred(B)} Out[P]^{k-1} = In[B]^k$ так как операция сбора монотонна.

3.5.3 Монотонность итераций

- \Diamond Утверждение 1. Пусть $In[B]^i$ и $Out[B]^i$ значения In[B] и Out[B] после i-ой итерации. Если структура потока данных монотонна, то $In[B]^{i+1} \leq In[B]^i$ и $Out[B]^{i+1} \leq Out[B]^i$
 - \diamond Индукция по i.
 - lack **Шаг**: Пусть $In[B]^k \leq In[B]^{k-1}$ и $Out[B]^k \leq Out[B]^{k-1}$

$$In[B]^{k+1} = \bigwedge_{P \in Pred(B)} Out[P]^k \leq \bigwedge_{P \in Pred(B)} Out[P]^{k-1} = In[B]^k$$

так как операция сбора монотонна.

$$Out[B]^{k+1} = f_B(In[B]^{k+1}) \le f_B(In[B]^k) = Out[B]^k$$
,

так как передаточная функция $f_B(x)$ монотонна.

3.5 Свойства итеративного алгоритма 3.5.3 Монотонность итераций

- \Diamond Утверждение 1. Пусть $In[B]^i$ и $Out[B]^i$ значения In[B] и Out[B] после i-ой итерации. Если структура потока данных монотонна, то $In[B]^{i+1} \leq In[B]^i$ и $Out[B]^{i+1} \leq Out[B]^i$
- \diamondsuit Следствие. Для любого i $In[B] \leq In[B]^i$ $Out[B] \leq Out[B]^i$

3.5.3 Монотонность итераций

- Утверждение 2. Если структура потока данных монотонна, то решение системы уравнений (1), найденное с помощью итеративного алгоритма, является максимальной фиксированной точкой этой системы.

$$In[B_j] \leq In[B_j]^{IA}, Out[B_j] \leq Out[B_j]^{IA},$$

где $\{In[B_j]^{IA},\ Out[B_j]^{IA}\}$ – решение системы (1), найденное с

помощью итеративного алгоритма, $\{In[B_j],\ Out[B_j]\}$ – любое другое решение этой системы.

Аналогично доказательству предыдущего утверждения.

3.5.4. Сходимость итеративного алгоритма

 \Diamond Определение 1. $Bocxodsuye \ddot{u}$ $uenouko \ddot{u}$ в частично упорядоченном множестве (L, \leq) называется последовательность его элементов, в которой

$$\chi_1 < \chi_2 < \dots < \chi_n.$$

- \Diamond Определение 2. $Bыcomo ilde{u}$ полурешетки называется наибольшее количество отношений < в восходящих цепочках.
- Утверждение. Если полурешетка структуры монотонна и имеет конечную высоту, то итеративный алгоритм гарантированно сходится после количества итераций, не превышающего произведения высоты полурешетки на количество базовых блоков.

3.5.5 Решение, получаемое итеративным алгоритмом (максимальная фиксированная точка)

- ♦ Итеративный алгоритм
 - (1) посещает базовые блоки не в порядке их выполнения, а в порядке обхода ГПУ (на каждой итерации каждый узел посещается только один раз)
 - (2) в каждой точке сбора применяет операцию сбора к значениям потока данных, полученным к этому моменту
 - (3) иногда в пределах итерации базовый блок B посещается до посещения его предшественников (прямой обход)

3.5.5 Решение, получаемое итеративным алгоритмом (максимальная фиксированная точка)

- \Diamond (4) для процесса итерации необходимо граничное условие, так как к блоку Entry передаточная функция неприменима.
 - (5) в качестве «нулевой итерации» все Out[B] инициализируются значением T, которое, по определению, «не меньше» всех значений потока, и, следовательно, того значения, которое оно заменяет; при этом монотонность передаточных функций обеспечивает получение результата, «не меньшего», чем искомое решение:

Без потери общности будем считать, что рассматривается прямая задача (обход графа потока от Entry к Exit).

Обратная задача (обход графа потока от Exit к Entry) рассматривается аналогично.

3.5.1 Идеальное решение

 \Diamond Пусть f_{B_k} – передаточная функция блока B_k в графе потока.

Рассмотрим путь $P = Entry \rightarrow B_1 \rightarrow B_2 \rightarrow \ldots \rightarrow B_{k-1} \rightarrow B_k$

(Путь P может содержать циклы: базовые блоки могут встречаться в нем по нескольку раз).

По определению передаточная функция пути Р:

$$f_P = f_{B_1} \circ f_{B_2} \circ ... \circ f_{B_{k-1}}$$

 $(f_{B_k}$ не является частью композиции, так как путь достигает начала блока B_k , но не его конца). Значение потока данных, создаваемое этим путем, представляет собой $f_P(l_{Entry})$, где l_{Entry} – граничное условие.

3.5.1 Идеальное решение

 \Diamond Пусть $\mathcal{P} = \{P_1, P_2, \ldots\}$ – множество $\mathit{всеx}\ \mathit{выполнимыx}$ путей от $\mathit{Entry}\ \mathsf{до}\ B_k$

Путь P является выполнимым только тогда, когда известно выполнение программы (начальные данные), которое следует в точности по этому пути.

 \Diamond Идеальным решением системы уравнений потока данных для $In[B_k]$ будет:

$$Ideal[B_k] = \bigwedge_{P \in P} f_P(l_{Entry}).$$

- \Diamond Решение $Ideal[B_k]$ названо идеальным, так как
 - (1) оно наиболее точное и
 - (2) вычислить его почти никогда не удается, так как поиск всех возможных путей выполнения задача неразрешимая. Следовательно, требуется поиск приближенного решения.

3.5.2 Свойства решений уравнений потока данных для монотонных и дистрибутивных структур

- \Diamond Добавление еще одного пути в сбор $\bigwedge_{P \in P}$ делает решение «меньше» в смысле частичного порядка полурешетки \leq
- ♦ Если просмотрены все выполнимые пути и ни одного лишнего, получается идеальное решение *Ideal*.
- \diamond Решение Sol_1 : $Ideal \leq Sol_1$, получается, когда npocmompeны не все sol_1 опасно, так как для непросмотренных путей преобразования программы могут оказаться неверными (нарушается консервативность).

3.5.2 Свойства решений уравнений потока данных для монотонных и дистрибутивных структур

- \Diamond Решение Sol_2 : $Sol_2 \leq Ideal$ обладает следующими свойствами:
 - (1) Sol_2 консервативно: оно содержит все выполнимые пути
 - (2) Sol_2 неточно: в нем не отсеяны «лишние» пути, т.е. либо не существующие в графе потока, либо существующие, но такие, по которым программа никогда не проследует.

В результате:

- (1) Sol_2 может запрещать некоторые из преобразований, разрешенных решением Ideal.
- (2) все преобразования, которые разрешает Sol2, корректны
- ♦ В абстракции потока данных предполагается, что каждый путь в графе потока может быть пройден.

3.5.3 Решение сбором по всем путям

 \Diamond Решение сбором по всем путям (МОР-решение) от Entry до входа в B_k определяется соотношением:

$$MOP[B_k] = \bigwedge_{P \in Q} f_P(l_{Entry}),$$

где $Q = \{P_1, P_2, \ldots\}$ – множество ecex путей от Entry до входа в блок B_k

Пути, рассматриваемые в MOP-решении, — это надмножество всех выполнимых путей: MOP-решение собирает значения потоков данных как для всех выполнимых путей, так и для путей, которые не могут быть выполнены. Следовательно, для всех B_k выполняется соотношение

$$MOP[B_k] \leq Ideal[B_k]$$
.

3.5.3 Решение сбором по всем путям

 \Diamond Замечание. Для прямой задачи $MOP[B_k]$ дает значения для $In[B_k]$. Для обратной задачи $MOP[B_k]$ дает значения для $Out[B_k]$. Если рассматривается обратная задача, MOP-решение определяется соотношением :

$$MOP[B_k] = \bigwedge_{P \in Q} f_P(l_{Exit}),$$

где $Q = \{P_1, P_2, \ldots\}$ – множество ecex путей от выхода из B_k до Exit .

3.5.4 Решение, получаемое итеративным алгоритмом (максимальная фиксированная точка)

- ◊ Итеративный алгоритм
 - (1) посещает базовые блоки не в порядке их выполнения (как при вычислении *МОР*-решения), а в порядке обхода графа потока (на каждой итерации каждый узел посещается только один раз)
 - (2) в каждой точке слияния алгоритм применяет операцию сбора к значениям потока данных, полученным к этому моменту
 - (3) иногда в пределах итерации базовый блок *В* посещается до посещения его предшественников (прямой обход)

3.5.4 Решение, получаемое итеративным алгоритмом (максимальная фиксированная точка)

- ♦ Следовательно:
 - необходимо граничное условие, так как к блоку Entry передаточная функция не применяется.
 - \diamond необходима инициализация потока данных для выходов из базовых блоков: Out[B] инициализируется значением T, которое, как известно, «не меньше» всех значений потока, и, следовательно, того значения, которое оно заменяет.
 - при использовании Т в качестве входных данных монотонность передаточных функций обеспечивает получение результата, «не меньшего», чем искомое решение:

3.5.4 Решение, получаемое итеративным алгоритмом (максимальная фиксированная точка)

♦ Пример (см. рисунок)

Требуется вычислить значение $In[B_4]$.

(1) МОР-решение:

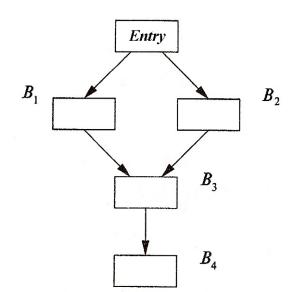
$$MOP[B_4] =$$

$$= ((f_{B_3} \circ f_{B_1}) \wedge (f_{B_3} \circ f_{B_2}))(l_{Entry})$$

(2) Итеративный алгоритм (узлы посещаются в порядке $B_1,\,B_2,\,B_3,\,B_4$)

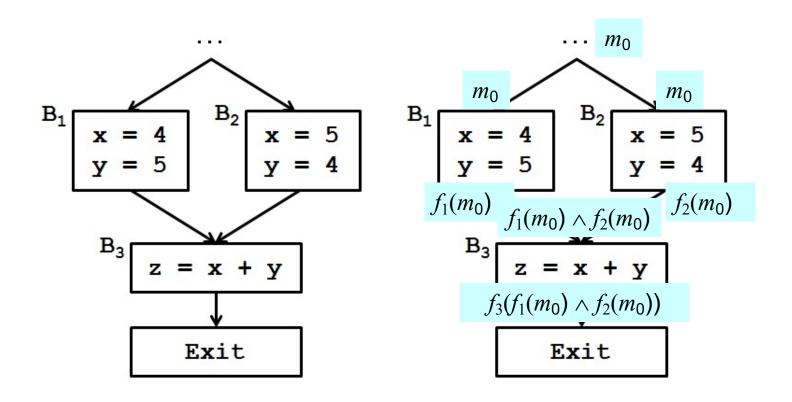
$$In[B_4] = f_{B_3}(f_{B_1}(l_{Entry}) \wedge f_{B_2}(l_{Entry}))$$

Операция сбора ∧ в итеративном алгоритме применяется раньше, чем при вычислении *МОР*-решения



Пример на распространение констант (тема одной из следующих лекций)

Пусть f_1, f_2 и f_3 – передаточные функции блоков B_1, B_2 и B_3 соответственно, а m_0 – состояние на входе в блоки B_1 и B_2 . Тогда



3.5.4 Решение, получаемое итеративным алгоритмом (максимальная фиксированная точка)

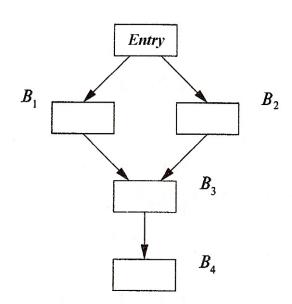
♦ Если структура потока данных дистрибутивна, то

$$In[B_4] = MOP[B_4]$$

если же структура потока данных монотонна, но не дистрибутивна, то

$$In[B_4] \leq MOP[B_4]$$

$$MFP[B] \leq MOP[B]$$



3.5.4 Решение, получаемое итеративным алгоритмом (максимальная фиксированная точка)

- \Diamond Если структура потока данных дистрибутивна, то для всех B MFP[B] = MOP[B].
- \diamond В разделах 3.2.5 и 3.2.6 была установлена дистрибутивность структур достигающих определений (RD), живых переменных (LV) и доступных выражений (AE).

Следовательно, в указанных случаях итеративный алгоритм позволяет получить МОР-решение.

3.5.5. Консервативность *MFP*-решения

♦ Утверждение. MFP-решение, получаемое итеративным алгоритмом, всегда консервативно

Доказательство

<u>Индукция по i</u>: значения, полученные итеративным алгоритмом после i итераций, не превосходят результата операции сбора по всем путям длины i.

Итеративный алгоритм завершается только тогда, когда он получает такой же ответ, как и при неограниченном количестве итераций.

Следовательно, $MFP \leq MOP$.

Но уже установлено: MOP ≤ Ideal.

Следовательно (транзитивность \leq), $MFP \leq Ideal$ и MFP-решение консервативно.