QBE
Файл ops.h
Граф файлов, в которые включается этот файл:

См. исходные тексты.

Макросы

#define X(NMemArgs, SetsZeroFlag, LeavesFlags)
 
#define T(a, b, c, d, e, f, g, h)
 
#define X(NMemArgs, SetsZeroFlag, LeavesFlags)
 
#define T(a, b, c, d, e, f, g, h)
 
#define X(NMemArgs, SetsZeroFlag, LeavesFlags)
 
#define T(a, b, c, d, e, f, g, h)
 

Функции

 O (add, { {[Kw]=Kw, [Kl]=Kl, [Ks]=Ks, [Kd]=Kd }, {[Kw]=Kw, [Kl]=Kl, [Ks]=Ks, [Kd]=Kd } }, 1) O(sub
 
 O (div, { {[Kw]=Kw, [Kl]=Kl, [Ks]=Ks, [Kd]=Kd }, {[Kw]=Kw, [Kl]=Kl, [Ks]=Ks, [Kd]=Kd } }, 1) O(rem
 
 O (udiv, { {[Kw]=Kw, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kw, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke } }, 1) O(urem
 
 O (mul, { {[Kw]=Kw, [Kl]=Kl, [Ks]=Ks, [Kd]=Kd }, {[Kw]=Kw, [Kl]=Kl, [Ks]=Ks, [Kd]=Kd } }, 1) O(and
 
 O (or, { {[Kw]=Kw, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kw, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke } }, 1) O(xor
 
 O (sar, { {[Kw]=Kw, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke } }, 1) O(shr
 
 O (shl, { {[Kw]=Kw, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke } }, 1) O(ceqw
 
 O (cnew, { {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke } }, 1) O(csgew
 
 O (csgtw, { {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke } }, 1) O(cslew
 
 O (csltw, { {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke } }, 1) O(cugew
 
 O (cugtw, { {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke } }, 1) O(culew
 
 O (cultw, { {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke } }, 1) O(ceql
 
 O (cnel, { {[Kw]=Kl, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kl, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke } }, 1) O(csgel
 
 O (csgtl, { {[Kw]=Kl, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kl, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke } }, 1) O(cslel
 
 O (csltl, { {[Kw]=Kl, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kl, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke } }, 1) O(cugel
 
 O (cugtl, { {[Kw]=Kl, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kl, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke } }, 1) O(culel
 
 O (cultl, { {[Kw]=Kl, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kl, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke } }, 1) O(ceqs
 
 O (cges, { {[Kw]=Ks, [Kl]=Ks, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Ks, [Kl]=Ks, [Ks]=Ke, [Kd]=Ke } }, 1) O(cgts
 
 O (cles, { {[Kw]=Ks, [Kl]=Ks, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Ks, [Kl]=Ks, [Ks]=Ke, [Kd]=Ke } }, 1) O(clts
 
 O (cnes, { {[Kw]=Ks, [Kl]=Ks, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Ks, [Kl]=Ks, [Ks]=Ke, [Kd]=Ke } }, 1) O(cos
 
 O (cuos, { {[Kw]=Ks, [Kl]=Ks, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Ks, [Kl]=Ks, [Ks]=Ke, [Kd]=Ke } }, 1) O(ceqd
 
 O (cged, { {[Kw]=Kd, [Kl]=Kd, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kd, [Kl]=Kd, [Ks]=Ke, [Kd]=Ke } }, 1) O(cgtd
 
 O (cled, { {[Kw]=Kd, [Kl]=Kd, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kd, [Kl]=Kd, [Ks]=Ke, [Kd]=Ke } }, 1) O(cltd
 
 O (cned, { {[Kw]=Kd, [Kl]=Kd, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kd, [Kl]=Kd, [Ks]=Ke, [Kd]=Ke } }, 1) O(cod
 
 O (cuod, { {[Kw]=Kd, [Kl]=Kd, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kd, [Kl]=Kd, [Ks]=Ke, [Kd]=Ke } }, 1) O(storeb
 
 O (storeh, { {[Kw]=Kw, [Kl]=Ke, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Km, [Kl]=Ke, [Ks]=Ke, [Kd]=Ke } }, 0) O(storew
 
 O (storel, { {[Kw]=Kl, [Kl]=Ke, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Km, [Kl]=Ke, [Ks]=Ke, [Kd]=Ke } }, 0) O(stores
 
 O (stored, { {[Kw]=Kd, [Kl]=Ke, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Km, [Kl]=Ke, [Ks]=Ke, [Kd]=Ke } }, 0) O(loadsb
 
 O (loadub, { {[Kw]=Km, [Kl]=Km, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }, 0) O(loadsh
 
 O (loaduh, { {[Kw]=Km, [Kl]=Km, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }, 0) O(loadsw
 
 O (loaduw, { {[Kw]=Km, [Kl]=Km, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }, 0) O(load
 
 O (extsb, { {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }, 1) O(extub
 
 O (extsh, { {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }, 1) O(extuh
 
 O (extsw, { {[Kw]=Ke, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Ke, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }, 1) O(extuw
 
 O (exts, { {[Kw]=Ke, [Kl]=Ke, [Ks]=Ke, [Kd]=Ks }, {[Kw]=Ke, [Kl]=Ke, [Ks]=Ke, [Kd]=Kx } }, 1) O(truncd
 
 O (stosi, { {[Kw]=Ks, [Kl]=Ks, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }, 1) O(dtosi
 
 O (swtof, { {[Kw]=Ke, [Kl]=Ke, [Ks]=Kw, [Kd]=Kw }, {[Kw]=Ke, [Kl]=Ke, [Ks]=Kx, [Kd]=Kx } }, 1) O(sltof
 
 O (cast, { {[Kw]=Ks, [Kl]=Kd, [Ks]=Kw, [Kd]=Kl }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Kx, [Kd]=Kx } }, 1) O(alloc4
 
 O (alloc8, { {[Kw]=Ke, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Ke, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }, 0) O(alloc16
 
 O (vaarg, { {[Kw]=Km, [Kl]=Km, [Ks]=Km, [Kd]=Km }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Kx, [Kd]=Kx } }, 0) O(vastart
 
 O (copy, { {[Kw]=Kw, [Kl]=Kl, [Ks]=Ks, [Kd]=Kd }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Kx, [Kd]=Kx } }, 0) O(nop
 
 O (addr, { {[Kw]=Km, [Kl]=Km, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }, 0) O(swap
 
 O (sign, { {[Kw]=Kw, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }, 0) O(salloc
 
 O (xidiv, { {[Kw]=Kw, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }, 0) O(xdiv
 
 O (xcmp, { {[Kw]=Kw, [Kl]=Kl, [Ks]=Ks, [Kd]=Kd }, {[Kw]=Kw, [Kl]=Kl, [Ks]=Ks, [Kd]=Kd } }, 0) O(xtest
 
 O (acmp, { {[Kw]=Kw, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kw, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke } }, 0) O(acmn
 
 O (afcmp, { {[Kw]=Ke, [Kl]=Ke, [Ks]=Ks, [Kd]=Kd }, {[Kw]=Ke, [Kl]=Ke, [Ks]=Ks, [Kd]=Kd } }, 0) O(par
 
 O (parc, { {[Kw]=Ke, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Ke, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }, 0) O(pare
 
 O (arg, { {[Kw]=Kw, [Kl]=Kl, [Ks]=Ks, [Kd]=Kd }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Kx, [Kd]=Kx } }, 0) O(argc
 
 O (arge, { {[Kw]=Ke, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Ke, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }, 0) O(call
 
 O (vacall, { {[Kw]=Km, [Kl]=Km, [Ks]=Km, [Kd]=Km }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Kx, [Kd]=Kx } }, 0) O(flagieq
 
 O (flagine, { {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }, 0) O(flagisge
 
 O (flagisgt, { {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }, 0) O(flagisle
 
 O (flagislt, { {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }, 0) O(flagiuge
 
 O (flagiugt, { {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }, 0) O(flagiule
 
 O (flagiult, { {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }, 0) O(flagfeq
 
 O (flagfge, { {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }, 0) O(flagfgt
 
 O (flagfle, { {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }, 0) O(flagflt
 
 O (flagfne, { {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }, 0) O(flagfo
 

Макросы

◆ T [1/3]

#define T (   a,
  b,
  c,
  d,
  e,
  f,
  g,
 
)
Макроопределение:
{ \
{[Kw]=K##a, [Kl]=K##b, [Ks]=K##c, [Kd]=K##d}, \
{[Kw]=K##e, [Kl]=K##f, [Ks]=K##g, [Kd]=K##h} \
}
Definition: all.h:215
Definition: all.h:214
Definition: all.h:213
Definition: all.h:216
Definition: parse.c:107

См. определение в файле all.h строка 168

◆ T [2/3]

#define T (   a,
  b,
  c,
  d,
  e,
  f,
  g,
 
)
Макроопределение:
{ \
{[Kw]=K##a, [Kl]=K##b, [Ks]=K##c, [Kd]=K##d}, \
{[Kw]=K##e, [Kl]=K##f, [Ks]=K##g, [Kd]=K##h} \
}
Definition: all.h:215
Definition: all.h:214
Definition: all.h:213
Definition: all.h:216
Definition: parse.c:107

См. определение в файле ops.h строка 5

◆ T [3/3]

#define T (   a,
  b,
  c,
  d,
  e,
  f,
  g,
 
)
Макроопределение:
{ \
{[Kw]=K##a, [Kl]=K##b, [Ks]=K##c, [Kd]=K##d}, \
{[Kw]=K##e, [Kl]=K##f, [Ks]=K##g, [Kd]=K##h} \
}
Definition: all.h:215
Definition: all.h:214
Definition: all.h:213
Definition: all.h:216
Definition: parse.c:107

◆ X [1/3]

#define X (   NMemArgs,
  SetsZeroFlag,
  LeavesFlags 
)

См. определение в файле all.h строка 180

◆ X [2/3]

#define X (   NMemArgs,
  SetsZeroFlag,
  LeavesFlags 
)

Используется в printfn().

◆ X [3/3]

#define X (   NMemArgs,
  SetsZeroFlag,
  LeavesFlags 
)

См. определение в файле ops.h строка 2

Функции

◆ O() [1/59]

O ( add  ,
{ {[Kw]=Kw, [Kl]=Kl, [Ks]=Ks, [Kd]=Kd }, {[Kw]=Kw, [Kl]=Kl, [Ks]=Ks, [Kd]=Kd } }  ,
 
)

◆ O() [2/59]

O ( div  ,
{ {[Kw]=Kw, [Kl]=Kl, [Ks]=Ks, [Kd]=Kd }, {[Kw]=Kw, [Kl]=Kl, [Ks]=Ks, [Kd]=Kd } }  ,
 
)

◆ O() [3/59]

O ( udiv  ,
{ {[Kw]=Kw, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kw, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [4/59]

O ( mul  ,
{ {[Kw]=Kw, [Kl]=Kl, [Ks]=Ks, [Kd]=Kd }, {[Kw]=Kw, [Kl]=Kl, [Ks]=Ks, [Kd]=Kd } }  ,
 
)

◆ O() [5/59]

O ( or  ,
{ {[Kw]=Kw, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kw, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [6/59]

O ( sar  ,
{ {[Kw]=Kw, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [7/59]

O ( shl  ,
{ {[Kw]=Kw, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [8/59]

O ( cnew  ,
{ {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [9/59]

O ( csgtw  ,
{ {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [10/59]

O ( csltw  ,
{ {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [11/59]

O ( cugtw  ,
{ {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [12/59]

O ( cultw  ,
{ {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [13/59]

O ( cnel  ,
{ {[Kw]=Kl, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kl, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [14/59]

O ( csgtl  ,
{ {[Kw]=Kl, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kl, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [15/59]

O ( csltl  ,
{ {[Kw]=Kl, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kl, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [16/59]

O ( cugtl  ,
{ {[Kw]=Kl, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kl, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [17/59]

O ( cultl  ,
{ {[Kw]=Kl, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kl, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [18/59]

O ( cges  ,
{ {[Kw]=Ks, [Kl]=Ks, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Ks, [Kl]=Ks, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [19/59]

O ( cles  ,
{ {[Kw]=Ks, [Kl]=Ks, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Ks, [Kl]=Ks, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [20/59]

O ( cnes  ,
{ {[Kw]=Ks, [Kl]=Ks, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Ks, [Kl]=Ks, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [21/59]

O ( cuos  ,
{ {[Kw]=Ks, [Kl]=Ks, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Ks, [Kl]=Ks, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [22/59]

O ( cged  ,
{ {[Kw]=Kd, [Kl]=Kd, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kd, [Kl]=Kd, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [23/59]

O ( cled  ,
{ {[Kw]=Kd, [Kl]=Kd, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kd, [Kl]=Kd, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [24/59]

O ( cned  ,
{ {[Kw]=Kd, [Kl]=Kd, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kd, [Kl]=Kd, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [25/59]

O ( cuod  ,
{ {[Kw]=Kd, [Kl]=Kd, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kd, [Kl]=Kd, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [26/59]

O ( storeh  ,
{ {[Kw]=Kw, [Kl]=Ke, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Km, [Kl]=Ke, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [27/59]

O ( storel  ,
{ {[Kw]=Kl, [Kl]=Ke, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Km, [Kl]=Ke, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [28/59]

O ( stored  ,
{ {[Kw]=Kd, [Kl]=Ke, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Km, [Kl]=Ke, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [29/59]

O ( loadub  ,
{ {[Kw]=Km, [Kl]=Km, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [30/59]

O ( loaduh  ,
{ {[Kw]=Km, [Kl]=Km, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [31/59]

O ( loaduw  ,
{ {[Kw]=Km, [Kl]=Km, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [32/59]

O ( extsb  ,
{ {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [33/59]

O ( extsh  ,
{ {[Kw]=Kw, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [34/59]

O ( extsw  ,
{ {[Kw]=Ke, [Kl]=Kw, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Ke, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [35/59]

O ( exts  ,
{ {[Kw]=Ke, [Kl]=Ke, [Ks]=Ke, [Kd]=Ks }, {[Kw]=Ke, [Kl]=Ke, [Ks]=Ke, [Kd]=Kx } }  ,
 
)

◆ O() [36/59]

O ( stosi  ,
{ {[Kw]=Ks, [Kl]=Ks, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [37/59]

O ( swtof  ,
{ {[Kw]=Ke, [Kl]=Ke, [Ks]=Kw, [Kd]=Kw }, {[Kw]=Ke, [Kl]=Ke, [Ks]=Kx, [Kd]=Kx } }  ,
 
)

◆ O() [38/59]

O ( cast  ,
{ {[Kw]=Ks, [Kl]=Kd, [Ks]=Kw, [Kd]=Kl }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Kx, [Kd]=Kx } }  ,
 
)

◆ O() [39/59]

O ( alloc8  ,
{ {[Kw]=Ke, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Ke, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [40/59]

O ( vaarg  ,
{ {[Kw]=Km, [Kl]=Km, [Ks]=Km, [Kd]=Km }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Kx, [Kd]=Kx } }  ,
 
)

◆ O() [41/59]

O ( copy  ,
{ {[Kw]=Kw, [Kl]=Kl, [Ks]=Ks, [Kd]=Kd }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Kx, [Kd]=Kx } }  ,
 
)

◆ O() [42/59]

O ( addr  ,
{ {[Kw]=Km, [Kl]=Km, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [43/59]

O ( sign  ,
{ {[Kw]=Kw, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [44/59]

O ( xidiv  ,
{ {[Kw]=Kw, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [45/59]

O ( xcmp  ,
{ {[Kw]=Kw, [Kl]=Kl, [Ks]=Ks, [Kd]=Kd }, {[Kw]=Kw, [Kl]=Kl, [Ks]=Ks, [Kd]=Kd } }  ,
 
)

◆ O() [46/59]

O ( acmp  ,
{ {[Kw]=Kw, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kw, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [47/59]

O ( afcmp  ,
{ {[Kw]=Ke, [Kl]=Ke, [Ks]=Ks, [Kd]=Kd }, {[Kw]=Ke, [Kl]=Ke, [Ks]=Ks, [Kd]=Kd } }  ,
 
)

◆ O() [48/59]

O ( parc  ,
{ {[Kw]=Ke, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Ke, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [49/59]

O ( arg  ,
{ {[Kw]=Kw, [Kl]=Kl, [Ks]=Ks, [Kd]=Kd }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Kx, [Kd]=Kx } }  ,
 
)

◆ O() [50/59]

O ( arge  ,
{ {[Kw]=Ke, [Kl]=Kl, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Ke, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [51/59]

O ( vacall  ,
{ {[Kw]=Km, [Kl]=Km, [Ks]=Km, [Kd]=Km }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Kx, [Kd]=Kx } }  ,
 
)

◆ O() [52/59]

O ( flagine  ,
{ {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [53/59]

O ( flagisgt  ,
{ {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [54/59]

O ( flagislt  ,
{ {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [55/59]

O ( flagiugt  ,
{ {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [56/59]

O ( flagiult  ,
{ {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [57/59]

O ( flagfge  ,
{ {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [58/59]

O ( flagfle  ,
{ {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }  ,
 
)

◆ O() [59/59]

O ( flagfne  ,
{ {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke }, {[Kw]=Kx, [Kl]=Kx, [Ks]=Ke, [Kd]=Ke } }  ,
 
)